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Fig 6 (a) The cover 1n relation to (b) the substrate attached to the substrate

carrier

IV. ConcLusiONS

A design approach that is simple in concept, that does not
require an expert level of understanding to implement, and that
presents a workable solution to the fundamental packaging prob-
lem of injecting and extracting energy from a hybrid or mono-
lithic circuit has been presented.
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A Note on the Mixed Potential Representation of
Electric Fields in Layered Media
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Abstract — A mixed potential formulation is given for electric fields in
layered environments. Contributions to the field from charges are identi-
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fied explicitly through a scalar Green’s function for layered media. The
outcome is a computationally expedient Sommerfeld integral representa-
tion.

I. INTRODUCTION

The study of electric fields due to surface currents in millime-
ter-wave integrated circuits [1], [2] brings to light certain facts
about the alternative representation of Hertz potentials. Despite
their apparent simplicity, these observations have not appeared
previously in this form. The points discussed in this paper bear
directly upon the divergent spectral integrations which have been
offered on several occasions [3], [4] in the recent literature; it is
hoped that ultimately they will find application in avoiding
comparatively awkward formulations.

II. HerTz POTENTIAL GREEN’S DYAD FORMULATION

Consider the configuration of layered dielectric media over a
conducting half-space as shown in Fig. 1. The electric field E(7)
in the cover, maintained by surface currents embedded in that
same layer, decomposes linearly into two parts as E 7 =
E? )+ E'(7). The fields of the right member may be termed the
primary and reflected components. A Hertz potential representa-
tion of £ based upon this decomposition is given by Bagby and
Nyquist [1], [2] as follows:

E(?)=(k3+vv~)f85(F,?')~[1?(7')/jwe]dS' (1)

where R ( r) describes source currents on surface S, and G=
TG? +G' is the decomposition of the Hertz potential Green’s
dyad into primary and reflected components. The dyad scalar
components are given as double spectral (Sommerfeld-type) inte-
grals:

" X (F—7 —ply—
GF(_, 4/) /’f exp J ( 2”(;]7,6;:;[ Ply—vy I] 42\ (2)
G/(7,7)
G, (7,7)
G/(7,7)
R:((A)) exp| jX-(F~7) | exp[ — nly— ] oA (3)

2
\ () 2(27)"p,
where G' = 2G/% + PG/ /9x)% + G, 9 + (3G, /9z)2] + £G2.
The R,, R,, and C are reflection and coupling coefficients

detailed in [1] and [2]. Note that p =[A* — k2]'/? is a wavenum-
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Fig. 2. Geometry of surface over which currents exist.

ber parameter, A = XA+ ZA, is a vector spatial frequency, and
d*X=d\ _dX,.

The f1rst term (with k? factor) in E (r) is proportional to the
vector Hertz potential contribution to E (produced directly by
currents K ), while the second term is subsequently treated as the
negative gradient of the scalar potential. In the present formula-
tion, and in many similar ones [3], [4], it is found that boldly
exchanging the order of differentiation (i.e., the vV operation)
with integration too many times leads to convergence problems
with the resulting inner-nested spectral integrals. Care will be
taken in the present development to allow only one such inter-
change; moreover, the impact of the derivative on the Green’s
function is subsequently minimized by a technique of integration
by parts.

Fig. 2 illustrates the geometry of surface S, supporting currents
of integrated electronics. Assume that K(7) is a continuous
function everywhere on S, except possibly at the boundary C, of
subregion S,. The exception is made because, although one
physically expects continuous currents, discontinuities could be
introduced mathematically by subsectional basis functions in
numerical solutions. C and C, are auxiliary boundary con-
tours just outside and inside of C,. Take C, to be the outer
contour of S. Let §'=8—§,, with #’ the outward normal unit
vector to §’. It is important to note here that the principal
Green’s function G? may in fact be represented either in Som-
 merfeld integral form or simply as exp(— jkR)/47R; the latter
form points out explicitly the nature of its source-point (R = |[F —
7’| = 0) singularity. This singularity, unless handled properly,
invalidates a subsequent application of the divergence theorem.
To maintain complete rigor a small area should be excluded from
S, at the location 7, to preclude the coincidence of 7 and 7,
during the spatial integration in (1). However, at points where K
is continuous there is no contribution from either the excluded
areas or its boundary contour. Therefore, the exclusion process is
not detailed here. Points of surface current discontinuity are
handled in the following section.

III. PriMARY COMPONENT OF ELECTRIC FIELD
Consider first the primary component of E. The electric scalar
potential contribution to E? is — 9 ®7, where

@7 = —(1/jwe)v-fSGP1?ds'

=—(1/jw<)[fSIV-(G”I?) dS'+/Sv-(GP1?) ds/}. (4)
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This expression is subsequently cast into a form which explicitly
exposes its electric charge sources. Although the method is con-
ventional, it is included here to guide the identification of similar
contributions to the reflected potential. The procedure is less
obvious in the latter case.

Exchanging the divergence and spatial integration prompts
vector manipulation of the integrand as follows:

v(G’K) =G’v-K+vG"-K=-v'-(G’K) +G"V'-K. (5)

Into the last term a substitution from the surface continuity
equation, V-K = — jwo, is made. The scalar potential becomes

<1>p=(1/jwe)[f v’ (G?K) dS'+f v'-(G"K) dS’
s S,

+(1/£)L(G1’a) ds’ (6)

to which the 2-D divergence theorem is applied to give

o7 = (1/6)[(1/jw)g§c Gr(#-K)dl
+(1/jw)¢ GP[h’-(I?* - E—)d1'+fscf’adS’]
CP

=(1/e)[56 G dl'+§ Gy, d1'+fc;ﬂad5/] (7)
Co C, s

where K™ and K~ are values of surface current on C,,+ and G,

respectively. Thus ®7 is written in terms of line and surface
charges, while the original derivatives have been effectively re-
moved from G?.

IV. REFLECTED COMPONENT
For the reflected potential,

& = (~1/joe)v- [ G Kds’ (8)
;

one may follow the same general sequence of steps as above, but
this time exploiting the specific form cf G Following the proce-
dure beginning with (5), and defining a scalar Green’s function
G' =G/ + 3G /3y,

v-(G-K)
=v-{2G'K + 3[(9G/ax) K, +(3G./3z) K.| + 2G/K.}
=(3G//9x) K, +(3G!/9z) K.
+(3/3p)[(3G! /0x) K, +(0G./9z) K.}
= (v.G))-K+[v..(36//3y)] - K
=(vG')-K=(-v'G") K. (9)

Carrying the analogous steps to completion, one finally arrives at
& =(1/€ Gpodl'+@ Gp,,dl'+PGodS'|. (10
(1/ )[gﬁC Gowdl'+§ Gy, i+ ] )

Therefore the reflected scalar potential is expressible in terms
of effective charges weighted by an appropriate Green’s function.
It is noted that a convenient form of the scalar reflected Green’s
function arose from the specific form of the Hertz potential
Green’s dyad cited earlier. Since the conversion process has
effectively removed derivatives from this function, the new for-
mulation is expected to be computationally efficient. Finally, the
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E field in the cover region is expressed as

E=-— jwufs(?'lzdS—V(l/e)

Gpdl'+@ Gp,,dl'+ | GadS’ 11
7 P10 ¢Cp P1p '/:9 ] ( )

where G=G?+G" is a Sommerfeld integral representation of
the scalar potential Green’s function for layered media. The
gradient operator may (at interior points) be exchanged with the
spectral integrals without rendering those Sommerfeld integrals
nonconvergent.

V. SUMMARY AND CONCLUSIONS

The preceding sections illustrate a procedure for avoiding the
needless imposition of derivatives onto the Green’s function, thus
avoiding convergence problems. In the process of converting to a
less singular formulation, unknown surface and line charges are
introduced explicitly into the problem. Presumably, for many
applied problems, these charge functions could be expanded in
suitable moment method basis sets along with the original surface
currents.
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Dominance of Resistive Losses over Hysteretic
Losses in Ferromagnetic Conductors

K. K. THORNBER

Abstract —In the presence of ferromagnetic conductors, electromag-
netic signal propagation might be seriously degraded through hysteretic
losses. It is shown, however, that, independent of frequency, such losses
are always smaller than the ordinary resistive losses one would calculate
for a similarly resistive, equivalent paramagnetic material. This indicates
that measurements of conductivity and permeability suffice to bound
hysteretic losses, obviating the necessity for measurements of hysteresis at
operating frequencies.

I. INTRODUCTION

Electrical interconnection within novel, multichip packaging
technologies [1] can require magnetic materials in order to satisfy
the constraints of processing. Thus, for example, nickel can be
used as a vapor barrier protecting an underlying copper layer
against the products and reactants present during the curing of
an adjacent polyimide insulating layer. Being capable of electro-
less deposition, Ni can also be used for thick, vertical structures
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such as vias. Other magnetic materials might also be included to
meet special objectives.

Whenever magnetic materials are used in an electromagnetic
environment, hysteretic losses are induced by the time-dependent
fields [2]. Such losses are difficult to measure and to calculate.
For example, a calculation requires knowledge of B(x,t) given
H(x,t") for ¢’ <t, under spatially nonuniform conditions, i.e.,
field strengths and hence hysteresis that are different in each
portion of the material. Boundary conditions introduce addi-
tional complications.

It is the purpose of this short note to observe that under rather
general conditions, the actual power losses to magnetic hysteresis
in conducting materials are less than power losses to electrical
resistance, the latter being calculated for a situation in which
locally B(x,w) =p (w)H(x,w) and J(x,w) = 6(w)E(x,w). For
the purposes of the calculation of the resistive losses, the material
is conductive and either paramagnetic or diamagnetic. Since the
conductivity, ¢, and the permeability, p,, are readily measurable,
this approach for bounding hysteretic losses can be implemented
directly.

II. DErivaTioN

That resistive losses exceed hysteretic losses is derived as
follows. Starting with Ampere’s law at the frequency of interest
(ignoring the displacement currents),

VvV X H=0oFE (1)

and taking the direction of penetration into the magnetic mate-
rial to be %, it follows that the largest transverse components of
the fields are related by

oE.(x) = 8, (x) @)

where 8= (—iwp,0) /2, the complex skin depth. The skin
depth can be obtained by combining Gauss’ law,

VXE=~ o8 (3)
at
with (1) to yield
6dB
ViH= a7 = —wop, H. (4)

In each volume element, therefore, the resistive power dissipation
o|E[*/2 becomes

Py(x) =—— = = o, |H|? (5)

where » = w/27 is the frequency of interest. P, 1s thus the local
rate of energy dissipation per unit volume which would be
calculated for a paramagnetic material of effective permeabil-
ity p..

The actual hysteretic loss at x per unit volume is given by

Py (x) =vH(x) dB(x) (6)

which under saturation conditions can be expressed in terms of
H, H, and B, as defined in Fig. 1 as

Py(x)=4vH,(x)B.(x). (7)
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