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(a)

Fig 6 (a) The cover m relation to (b) the substrate attached to the substrate

carrier

IV. CONCLUSIONS

A design approach that is simple in concept, that does not

require an expert level of understanding to implement, and that

presents a workable solution to the fundamental packaging prob-

lem of injecting and extracting energy from a hybrid or mono-

lithic circuit has been presented.
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A Note on the Mixed Potential Representation of
Electric Fields in Layered Media
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.&vfnrcf —A mixed potential formulation is given for electric fields in

layered environments. Contributions to the field from charges are identi-
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Fig. 1 Configuration of layered media.

fied explicitly through a scafar Green’s function for layered media. The

outcome is a computationally expedient Sommerfeid integral representa-

tion.

1. INTRODUCTION

The study of electric fields due to surface currents in millime-

ter-wave integrated circuits [1], [2] brings to light certain facts

about the afternative representation of Hertz potentials. Despite

their apparent simplicity, these observations have not appeared

previously in this form. The points discussed in this paper bear

directly upon the divergent spectral integrations which have been

offered on several occasions [3], [4] in the recent literature; it is

hoped that ultimately they will find application in avoiding

comparatively awkward formulations.

II. HERTZ POTENTIAL GREEN’S DYAD FORMULATION

Consider the configuration of layered dielectric media over a

conducting half-space as shown in Fig. 1. The electric field ~(;)

in the cover, maintained by surface currents embedded in that

same layer, decomposes linearly into two parts as E(7)=

~P(F) + ~(7). The fields of the right member maybe termed the

primary ~nd reflected components. A Hertz potential representa-

tion of E based upon this decomposition is given by Bagby and

Nyquist [1], [2] as follows:

where F(r) describes source currents on surface S, and ~ =

~ GP + d’ is the decomposition of the Hertz potential Green’s

dyad into primary and reflected components. The dyad scalar

components are given as double spectral (Sommerfeld-type) inte-

grals:

G’(F, 7) = jj:mexp[jX(7-7’)] exp[-pcl,vy’l] d2A(2)
2(277)’pc

where (?’ = .?G~2 + }[( dG~/i3x)2 + G,~~ + ( 8GJ/dz)2] + 2G,r;.

The R,, R,,, and C are reflection and coupling coefficients

detailed in [1] and [2]. Note that p< = [A2 – k: ]’/2 is a wavenum-
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Fig. 2. Geometry of surface over which currents exmt.

ber parameter, ~ = 2AX + 2A, is a vector spatial frequency, and

d2k=dA, dA:.

The first term (with k: factor) in E(7) is proportional to the

vector Hertz potential contribution to ~ (produced directly by

currents ~), while the second term is subseauentlv treated as the,. . .
negative gradient of the scalar potential. In the present formula-

tion, and in many similar ones [3], [4], it is found that boldly

exchanging the order of differentiation (i.e., the v v. operation)

with integration too many times leads to convergence problems

with the resulting inner-nested spectral integrals, Care will be

taken in the present development to allow only one such inter-

change; moreover, the impact of the derivative on the Green’s

function is subsequently minimized by a technique of integration

by parts.

Fig. 2 illustrates the geometry of surface ~, supporting currents

of integrated electronics. Assume that K(F) is a continuous

function everywhere on S, except possibly at the boundary CP of

subregion SP. The exception is made because, although one

physically expects continuous currents, discontinuities could be

introduced mathematically by sub sectional basis functions in

numerical solutions. CP+ and CP– are auxiliary boundary con-

tours just outside and inside of CP. Take ~ to be the outer

contour of S, Let S’= S – SP, with % the outward normal unit

vector to S’. It is important to note here that the principal

Green’s function GP may in fact be represented either in Som-

- merfeld integral form or simply as exp ( – jkR )/4 nR; the latter

form points out explicitly the nature of its source-point ( R = l?–

~1 = 0) singt.tlafity. This singularity, unless handled properly,
invalidates a subsequent application of the divergence theorem.

To maintain complete rigor a small area should be excluded from

S, at the location ?, to preclude the coincidence of 7 and 7’3

during the spatial integration in (l). However, at points where K

is continuous there is no contribution from either the excluded

areas or its boundtuy contour. Therefore, the exclusion process is

not detailed here. Points of surface current discontinuity are

handled in the following section.

This expression is subsequently cast into a form which explicitly

exposes its electric charge sources. Although the method is con-

ventional, it is included here to guide the identification of similar

contributions to the reflected potential. The procedure is less

obvious in the latter case.

Exchanging the divergence and spatial integration prompts

vector manipulation of the integrand as follows:

V.(GPI?) =G’V. g+ VGp. ~=- V’. (G’I?)+GPV’K. (5)

Into the last -term a substitution from the surface continuity

equation, v. K = – jo u, is made. The scalar potential becomes

[
@p= (1/jcoc) ~ v’. (GPI?) dS’-t~ v’. (GPI?) cM’

s’ Sp 1
+ (l/c)/ (G%) dS’

s

to which the 2-D divergence theorem is applied to give

@p= (1/+[(1/j+j Gp(fi’. Z?)dl’
co

(6)

[ /]
+(1/@)~ GP 2’. (I? – ~-) all’+ GpudS’

Cp s

[ 0=(1/()+COGPP,Odl’ + (fc Gpplp dl’ + sGpodS’ (7)
P

where I?+ and ~– are values of surface current on CP~ and C;-,

respectively. Thus @J’ is written in terms of line and surface

charges, while the original derivatives have been effectively re-

moved from GJ’.

IV. REFLECTED COMPONENT

For the reflected potential,

(8)

one may follow the same generaf sequence of steps as above, but

this time exploiting the specific form cf &. Following the proce-

dure beginning with (5), and defining a scalar Green’s function

G“ = G: + dG:/r?y,

v.(&. @

=v” { $G:KT + j[(~G:/dx) Ky +( dGc!’/dz)K:] + $Gr’’fL}

= (aG:/ax)~, +( aG:/az)K

+( a/aY)[( aG;/ax)2rx +( dGy9ZJK=]

= (v..2G;) ”~+[v..z( aGaY)])] “~

=(vGr)i=(-v’Gr)i. (9)

Carrying the analogous steps to completion, one finally arrives at

III. PRIMARY COMPONENTOFELECTRICFIELD

[ 10’=(l/c)j Grp,odl’+$c G’PIP all’+ ~G’udS’ . (10)

Consider first the primary component of i?. The electric scalar co P

potential contribution to ~J’ is – v@ P, where
Therefore the reflected scalar potentiaf is expressible in terms

of effective charges weighted by an appropriate Green’s function.
@P= –(l/jtic)V .jGPl?dS’ It is noted that a convenient form of the scalar reflected Green’s

s
function arose from the specific form of the Hertz potential

[ 1
Green’s dyad cited earlier. Since the conversion process has

. -(l/jut) LV.(Gpl?) dS’+ ~ V.(Gpl?) dS’ . (4) effectively removed derivatives from this function, the new for-

P mulation is expected to be computationally efficient. Finally, the
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~ field in the cover region is expressed as

where G = G~ + G’ is a Sommerfeld integral representation of

the scalar potential Green’s function for layered media. The

gradient operator may (at interior points) be exchanged with the

spectraf integrals without rendering those Sommerfeld integrals

nonconvergent.

V. SUMMARY A~~ CONCLUSIONS

The preceding sections illustrate a procedure for avoiding the

needless imposition of derivatives onto the Green’s function, thus

avoiding convergence problems. In the process of converting to a

less singular formulation, unknown surface and line charges are

introduced explicitly into the problem. Presumably, for many

applied problems, these charge functions could be expanded in

suitable moment method basis sets along with the originaf surface

currents.
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Dominance of Resistive Losses over Hysteretic
Losses in Ferromagnetic Conductors

K. K. THORNBER

Abstract — In the presence of ferromagnetic conductors, electromag-

netic signal propagation might be seriously degraded through hysteretic

losses. It is shown, however, that, independent of frequency, such losses

are always smaller than the ordinary resistive losses one would calculate

for a similarly resistive, equivalent paramagnetic material. This indicates

that measurements of conductivity and permeability suffice to bound

hysteretic losses, obviating the necessity for measurements of hysteresis at

operating frequencies.

1. INTRODUCTION

Electrical interconnection within novel, multichip packaging

technologies [1] can require magnetic materials in order to satisfy

the constraints of processing. Thus, for example, nickel can be

used as a vapor barrier protecting an underlying copper layer

against the products and reactants present during the curing of

an adjacent polyimide insulating layer. Being capable of electro-

less deposition, Ni can also be used for thick, verticaf structures
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such as vias. Other magnetic materials might also be included to

meet special objectives.

Whenever magnetic materials are used in an electromagnetic

environment, hysteretic losses are induced by the time-dependent

fields [2]. Such losses are difficult to measure and to calculate.

For example, a calculation requires knowledge of B(x, t) given

H(x, t’) for t’< t,under spatially nonuniform conditions, i.e.,

field strengths and hence hysteresis that are different in each

portion of the material. Boundary conditions introduce addi-

tional complications.

It is the purpose of this short note to observe that under rather

general conditions, the actual power losses to magnetic hysteresis

in conducting materials are less than power losses to electrical

resistance, the latter being calculated for a situation in which

locally &?(x, ~) =pe(u)H(x, LO)and .J(x, u) = u(u)E(x, u). For

the purposes of the calculation of the resistive losses, the material

is conductive and either paramagnetic or diamagnetic. Since the

conductivity, o, and the permeability, ~,, are readily measurable,

this approach for bounding hysteretic losses can be implemented

directly.

II. DERIVATION

That resistive losses exceed hysteretic losses is derived as

follows. Starting with Ampere’s law at the frequency of interest

(ignoring the displacement currents),

VXH=rrE (1)

and taking the direction of penetration into the magnetic mate-

rial to be A, it follows that the largest transverse components of

the fields are related by

OE, (X) =b-lq(x) (2)

where 8- (– iq.teu) – 1/2, the complex skin depth. The skin

depth can be obtained by combining Gauss’ law,

3B
VXE=– Z

with (1) to yield

v~H–%_ –ZaO/.LeH.
at

(3)

(4)

In each volume element, therefore, the resistwe power dissipation

u IE 12/2 becomes

where ZJ= w/2 T is the frequency of interest. PI: M thus the local

rate of energy dissipation per unit volume which would be

calculated for a paramagnetic materiaf of effective permeabil-

ity p=.

The actual hysteretic loss at x per unit volume is given by

p;;(x) =@H(x) .dB(x) (6)

which under saturation conditions can be expressed in terms of

H,, H,, and B, as defined in Fig. 1 as

P“(x) =4 UH, (X) B$(X). (7)
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